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Abstract 

Background:  Pathological gaits of children may lead to terrible diseases, such as 
osteoarthritis or scoliosis. By monitoring the gait pattern of a child, proper therapeutic 
measures can be recommended to avoid the terrible consequence. However, low-cost 
systems for pathological gait recognition of children automatically have not been on 
market yet. Our goal was to design a low-cost gait-recognition system for children with 
only pressure information.

Methods:  In this study, we design a pathological gait-recognition system (PGRS) with 
an 8 × 8 pressure-sensor array. An intelligent gait-recognition method (IGRM) based 
on machine learning and pure plantar pressure information is also proposed in static 
and dynamic sections to realize high accuracy and good real-time performance. To 
verifying the recognition effect, a total of 17 children were recruited in the experiments 
wearing PGRS to recognize three pathological gaits (toe-in, toe-out, and flat) and nor-
mal gait. Children are asked to walk naturally on level ground in the dynamic section 
or stand naturally and comfortably in the static section. The evaluation of the perfor-
mance of recognition results included stratified tenfold cross-validation with recall, 
precision, and a time cost as metrics.

Results:  The experimental results show that all of the IGRMs have been identified with 
a practically applicable degree of average accuracy either in the dynamic or static sec-
tion. Experimental results indicate that the IGRM has 92.41% and 97.79% intra-subject 
recognition accuracy, and 85.78% and 78.81% inter-subject recognition accuracy, 
respectively, in the static and dynamic sections. And we find methods in the static 
section have less recognition accuracy due to the unnatural gesture of children when 
standing.

Conclusions:  In this study, a low-cost PGRS has been verified and realize feasibil-
ity, highly average precision, and good real-time performance of gait recognition. 
The experimental results reveal the potential for the computer supervision of non-
pathological and pathological gaits in the plantar-pressure patterns of children and for 
providing feedback in the application of gait-abnormality rectification.
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Background
Children are prone to have pathological gaits when starting toddling, which may cause 
osteoarthritis, scoliosis, or other debilitating diseases. To monitoring the pathological 
gait pattern of a human, various bio-signals are adopted among which kinematics infor-
mation and plantar-pressure show more potential for their easy to measure and explain 
[1, 2]. These high-dimensional bio-signals indicate complex states of human muscles 
and joints [3], which cause difficulty to interpret directly by conventional kinematics 
or kinetics. However, machine learning (ML) recently has more potential to deal with 
the large-data-driven pattern-recognition problems with the development of computer 
technology [1, 4].

Employing computer-vision technology, kinematics information can be easily 
acquired. Elham et  al. acquired gait features including angles, velocity, and accelera-
tion of the joints based on Kinect skeletal tracking sequences [5]. Two ML approaches, 
an instance-based discriminative classifier and a dynamical generative classifier, were 
examined to distinguish between healthy and pathological gaits. F1-score of the former 
can reach up to 96% when walking at a fast pace. Javier et  al. developed vision-based 
gait-impairment analysis for aided diagnosis [6]. A number of semantic and normalized 
gait features were computed from a single video to provide samples under eight different 
walking styles: one normal and seven impaired patterns. Several statistical studies were 
carried out to prove the sensitivity of features in measuring the expected pathologies. 
Zakaria et al. [7] classified Autism Spectrum Disorder (ASD) children’s gait from normal 
gait. Gait features were the absolute or relative Cartesian coordinates of 20 joints of the 
subject measured by a depth camera. Various methods were used to classify these two 
gaits, among which support vector machine (SVM) classifier has the lowest accuracy, 
98.67%, and Naives Bayes classifier has the highest accuracy, 99.66%. Chen et al. [8] pro-
posed a gait classification and develop a simple and efficient method for the quantifica-
tion method for parkinsonian gait from monocular video imaging based on kernel-based 
principal component analysis. Faragó et al. [9, 10] proposed a framework for classifying 
normal walking, heel-walking, and toe-walking based on the cross-correlation of plantar 
pressures with corresponding lower-limb EMG signals.

Plantar pressure contains abundant gait-pattern information, which can be used to 
reasonably predict and explain human physiological diseases [2]. However, it has high 
dimensionality, temporal dependence, high variability, complex correlations between 
curves, and high non-linear relationship features [4]. Mei et  al.[11, 12] analyzed the 
force of center of pressure (CoP) sample entropy characteristics among the four types, 
pes cavus, pes valgus, hallux valgus, and normal feet, using the Footscan system. The 
study showed that dynamic characteristics of CoP progression contain information of 
the foot type. Zhu et al. [13] developed an umbilical data-acquisition system to measure 
the pressure between the foot and shoe during walking that had seven force-sensitive 
resistors (FSRs) on the surface of each insole of a pair of extra-depth shoes. The team 
found that a shuffling gait with short steps would increase the period of foot flat and thus 
minimize any excessive local plantar pressures [14]. Lin et  al. [15] employed dynamic 
features derived from tracking gait to recognize individuals. The self-organizing-map 
(SOM) neural network (NN) algorithm and SVM were used in both schemes for data 
classification. Experiments showed that a higher recognition rate was achieved with the 
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method using all of the plantar pressure sensor-cell values during walking regardless 
of the algorithm used, which suggested that the foot-pressure distribution of gait is a 
suitable feature for gait recognition. Sazonov et al. [16] built a NN to predict geriatric 
patterns using plantar pressure and heel acceleration information, whose classification 
accuracy was 91.6% on average. Data for training the NN were collected by sensor shoes 
with 34 pressure-sensing elements uniformly distributed across the foot and a 2D accel-
erometer. Based on a shoe-integrated system with an inertial measurement unit (IMU), 
four FSRs, and a bend sensor, Chen et  al. [17] applied principal component analysis 
(PCA) and SVM for multi-pattern classification (toe-in, toe-out, over-supination, heel-
walking, and normal pattern). A total of four subjects tested the shoe-integrated device 
in outdoor environments. Experimental results of the four subjects demonstrated that 
the proposed method was robust and highly accurate up to 90%. More interestingly, the 
study showed that insole sensors played a more important role in solving classification 
problems than IMUs.

Here, three foot types of children including toe-in, toe-out, and flat feet are concerned. 
Toe-in, toe-out, and flat feet are the most common reasons for parental concerns and 
referral for a specialist opinion about their children’s gait [18]. The vast majority of path-
ological gait may correct spontaneously if left untreated [19–23] due to the underde-
veloped skeleton of children, which makes it more of a concern to the parents than to 
the podiatrist. However, since the theoretical explanation and analysis for the self-heal-
ing capability is unclear, the child’s gait still needs constant attention. Thus, designing a 
device for parents to watch children’s gait periodically at home is of high necessity. Many 
underlying causes leading to in- or out-toeing gait lies in the hip joint, femur, or tibia or 
the hindfoot or forefoot [18]. The most straightforward physical examination method is 
measuring foot progression angle (FPA) which describes the orientation of the child’s 
foot to the direction of progression. For a normal child, FPA is slightly out-toed (+ 10°) 
with a range from −3° to + 20° [24, 25]. If FPA is less than −3°, a child is considered to 
have an in-toeing gait and if it is more than 20°, a child is considered to have an out-
toeing gait. And FPA can influence the distribution of the plantar pressure. Rosenbaum 
[26] found that in-toeing increasingly loads the lateral aspects of the midfoot and fore-
foot by as much as 61% and 49%, respectively, whereas out-toeing intensifies the load 
on the medial aspect, i.e., predominantly the medial midfoot and medial forefoot by as 
much as 72% and 52%. Traditionally, a flat foot can also be diagnosed by measuring the 
area of contact between the foot and the ground [22, 27]. However, as far as we are con-
cerned, there is no related low-cost system for pathological gait recognition of children 
automatically for ordinary parents with only pressure information. The contributions of 
this study are the following:

1)	 A low-cost pathological gait-recognition system (PGRS) with an 8 × 8 pressure sen-
sor array is built. With this system, parents can watch children’s gait state daily with-
out the need to consult a podiatrist frequently in hospital. This not only reduces the 
worry and anxiety of parents, but also improves the efficiency of podiatrists, reduc-
ing the pointless counseling for childhood gait.

2)	 A highly accurate and fast intelligent gait-recognition method (IGRM) is realized in 
static and dynamic situations utilizing only plantar-pressure data.
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3)	 The effects of the algorithm with plantar pressure data collected in both static and 
dynamic sections are compared. And the research shows that the IGRMs in the 
dynamic section have higher average accuracy than those in the static section.

Methods
To deal with the gait data with high dimensionality, temporal dependence, high vari-
ability, correlations between curves, and non-linear relationships [4], the proposed 
gait-recognition algorithm has three steps: feature extraction, feature reduction, and 
classification. Figure  1 shows an overview of the abnormal gait-recognition algorithm 
and corresponding gait patterns. Firstly, the data are transformed from time domain 
to orthogonal domain to handle the gait’s temporal dependence and get data features. 
Here, several transformations can be used, for example, fast Walsh transform (FWT), 
discrete cosine transform (DCT), and fast Fourier transform (FFT), among which FFT, 
used in the proposed IGRM, is the most common and effective one [17, 28–33]. After 
feature extraction by FFT, feature combination and feature reduction algorithms, PCA 
and LDA, are done to make gait-data dimensionality lower to apply it in real-time situ-
ations. Finally, to handle the high-variability problem, correlations between curves, and 
non-linear relationships, a robust classification algorithm is used.

Gait feature extraction from gait cycle

In the dynamic situation where subjects walk naturally on the level ground wearing 
PGRS, the detailed gait feature-extraction process is shown in Fig. 2. For length-L data, 
the kth feature of the FFT S(k) can be obtained through

Fig. 1  a Diagram of the gait-recognition algorithm. b Gait pattern for classification—toe-in, toe-out, flat and 
normal
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where k is the integer between 0 (included) and L-1 (included); W  is e−j2π/L ; n is the time 
series and t(n) t(n) represents the data value at time n.

Simple data sampling strategy with the sliding window method is used to make a 
proper classification on the assumption that the stochastic process related to the features 
is stationary over the window interval. We find that if a window interval L is chosen wide 
enough to include multiple gait periods, then the assumption can be acceptable. Con-
sequently, in this step, the temporal dependence is removed through FFT. In this paper, 
the sliding window is Hanning window with a width of 512 sample intervals (50 Hz sam-
ple frequency, corresponding to about 10 gait periods). A 512-length vector S(k) can 
be got by transforming the plantar-pressure data in the sliding window to frequency 

(1)S(k) =

L−1
∑

n=0

t(n)Wkn,

Fig. 2  The procedure of gait feature extraction from gait cycle. a 30 sensor blocks with the red mark are 
selected for feature extraction. b Sliding window method (Hanning window with 512-sample intervals width) 
is applied to all n sensor blocks and transformed to frequency domain later. c Dividing five frequency bands 
from FFT frequency spectrum, 0 (exclude)–2 Hz, 2 (exclude)–4 Hz, 4 (exclude)–6 Hz, 6 (exclude)–8 Hz, and 8 
(exclude)–10 Hz, and summing all the frequent value in each frequency band to generate a five-elements 
vector for each sensor. d Joining all the five-element vector from each sensor together and normalizing to a 
150-element unit vector
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domain using FFT. The vector denotes the energy information distribution on the fre-
quency domain of a pressure sensor block during walking. Therefore, vectors Si,j(k) , 
where i = 1…8 and j = 1…8, including all 8 × 8 sensor blocks’ frequency information can 
describe the entire foot energy information distribution. Since the experiments show 
that the major information of children’s gait data is between 0 and 10 Hz, gait data are 
divided into five groups which are 0 (exclude)–2 Hz, 2 (exclude)–4 Hz, 4 (exclude)–6 Hz, 
6 (exclude)–8 Hz, and 8 (exclude)–10 Hz. This division of groups is optimized by con-
ducting repeatedly the experiments with different number of groups to get the best per-
formance of prediction accuracy, prediction accuracy variation, prediction time cost on 
the overall classification task. Summing all of the amplitude of frequency components 
in each group, the 512-length vector S(k) is transformed to a five-element feature vec-
tor. To denote the information of the entire foot, 30 five-element feature vectors from 
30 sensors are joined together, obtaining a 150-element vector as a training sample. 
Note that bodyweight is different for different children, the 0 Hz pressure information is 
excluded and the 150-element training sample is normalized to a unit vector to eliminate 
the weight information influence when classifying the foot types.

In the static situation where subjects stand naturally on the level ground wearing 
PGRS, the 0 Hz pressure information is kept only and the feature number of a plantar 
pressure sensor is no longer five but one. The final training sample for gait recognition 
becomes a 30-element vector. Normalization is also used to vanish the influence of the 
bodyweight of the subjects.

Feature reduction

In this step, plantar-pressure information is further compressed and keeps effectiveness 
at the same time. As a quite effective and common unsupervised method in signal pro-
cessing, PCA keeps the variance of the original data during the dimension reduction. 
However, PCA may cause a mix-up of different-label data in some situations, as Fig. 3a 
shows. In these situations, another supervised method, LDA, is more efficient. LDA 
maximizes the average differences among class projections while minimizing average 
projections of each class (intraclass) after feature reduction. In mathematics, the main 
idea of LDA can be described as maximizing J (W ):

where SB and SW  are the dispersion between two different classes and within a class, 
respectively; i and j represent the class number; symbol ∼ represents the variable after 
dimensional reduction and WT  is defined as the corresponding transformation matrix.

Gait‑classification model

Our goal in this step is to classify the gaits into different classes, i.e., toe-in, toe-out, flat, 
and normal according to the feature vectors. Many algorithms in the machine learning 
field can be used for binary classification problems. In this paper, NN and SVM are used 
to perform the gait-classification function.

(2)max J (W ) =

∑

i

S̃B(i)

∑

j

S̃W (j)

=

∑

i

W
TSB(i)W

∑

j

WTSW (j)W
,
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As many researchers have proved, SVM can work very well for multi-dimensional 
data[34, 35]. More importantly, sma3ll computation is needed for the final decision 
function of SVM which comprised only a few support vectors. As shown in Fig. b, it 
obtains a hyperplane, ωT

x + b = 0 , to classify two classes by maximizing the margin 
to the closest data from two classes separately. The decision function can be described 
as

where x is the feature vector, ω is the normal vector to the hyperplane, b
‖ω‖

 determines 
the offset of the hyperplane, and y are either 1 or −1, each indicating the class to which 
the feature vector belongs. A linear SVM’s goal is to minimize the risk function:

where the term ωTω ωTω is called the regularization term and C
N
∑

i=1

ξi is empirical toler-

ance [36]. Empirical tolerance is not only used to remove data noise, but also to deal 
with data non-linearly separable. To obtain the linear inseparable classification model, 
the penalty parameter C calculates the penalties for errors by determining the trade-off 
between the empirical tolerance and regularized term. The larger C is, the stronger pen-
alties are assigned to errors.

To solve the non-linear classification problem effectively, a kernel function is intro-
duced to the decision function:

(3)
{

f (x) = ωT
x + b

y = sign(f (x))
,

(4)

Minimize
ω,b

1
2 ω

Tω + C

N
∑

i=1

ξi

Subject to

{

ξi ≥ 0

yi

(

ωT
x + b

)

≥ 1− ξi
,

(5)f (xTx)
kernel
−−−→ f (φ(xi, x)),

Fig. 3  a LDA and PCA algorithm performance in classification in the specific situation. In this situation, LDA’s 
performance is better than PCA’s. b SVM classification. The main idea of the SVM is projecting data points into 
a higher dimensional space, specified by a kernel function, and computing a maximum-margin hyperplane 
decision surface that separates the two classes
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where φ(xi, x) is a kernel function that maps x x space to a higher-dimensional space so 
that a hyperplane can be found to classify samples. In this paper, linear or RBF kernel is 
used in our classification model. To solve this formulation, SVM can be trained by Platt’s 
sequential minimal optimization (SMO) algorithm [37].

NN is a network of neurons and the connections of biological neurons are modeled 
as weights. Training the weight using the backpropagation algorithm, NN can learn the 
mapping relationship between input and output. Regardless of its powerful ability for 
solving non-linear problems, NN is a black box comparing with explainable and intuitive 
SVM.

Results
In this part, a low-cost PGRS is built to measure children’s plantar-pressure data dur-
ing walking, and children’s experiments in dynamic and static sections are designed to 
verify the performance of recall, precision, and time cost of the IGRM. Several typical 
gaits, namely, toe-in, toe-out, flat, and normal, are involved. All of the subjects signed 
informed consent forms before experiments.

Pathological gait‑recognition system

As shown in Fig. 4, a PGRS consists of an 8 × 8 pressure-sensor array, a signal-collecting 
circuit, a micro-computing unit, and a wearable shoe-integrated mechanism is designed.

The plantar pressure of adults is in the range of 0–1000 kPa during walking [38], and 
the maximal pressure can up to approximately 1400  kPa when doing sports. Based 
on weight conversion, children’s plantar pressure is estimated to be in the range of 0 
to 700  kPa. Therefore, the pressure-detection range of the sensor array is chosen as 
0–1000 kPa. The 8 × 8 piezoresistive sensor array structure and parameter characteris-
tics of this series (Changzhou Roxi Electronic Technology Co. LTD, China) are shown in 

Fig. 4  Pathological gait-recognition system. 8 × 8 sensor array is under the slipper and controller attached 
to the child’s leg with hook-and-loop fasteners. The control circuit board contains a signal-collecting circuit, a 
low-energy Bluetooth device (HC-42 with Bluetooth 5.0, HuiCheng Information Technology Co., Ltd., China), 
STM32F103 controller, and two 4.2-V Li-ion batteries. The signal-collecting circuit operates with 5 V of power 
generated by an LM7805 unit (KIA7805AP, three-terminal positive voltage regulator of 5 V, KEC, China) and the 
STM32F103 circuitry operates with 3.3 V generated by an AMS117 unit (low-dropout-voltage regulator with 
fixed 3.3 V, Advanced Monolithic Systems, Inc.)
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Fig. 5a and b. The relationship of load pressure P P onto the sensor and its resistance Rx 
Rx can be described as:

where Kp−r is the sensor characteristic constant.
In sensor calibration process, a set of standard weights are used to load on the sensor 

block. The load is added from 0 to 11 kg and then reduced from 11 to 0 kg for each sen-
sor block twice, and linear regression was applied to the data by least square method to 
get the calibration line. All the test results of the 8 × 8 sensors’ performance using the 
control circuit mentioned below are shown in Fig. 5c, indicating its good repeatability 
and linearity.

For the signal-collecting circuit and the micro-computing unit, as the schematic is shown 
in Fig. 6a, a microcontroller (STM32F103C8T6 with Cortex-M3 core and a maximum CPU 
speed of 72 MHz; STMicroelectronics Corp., USA) was chosen as its control core. Non-
inverting amplifier converts resistor of the sensor Rx to voltage Vout . The charging resistor 
R0 used to stable the ADC output is 1 KΩ [39]. We use two pieces of quad bilateral switch 
HCF4066B chip (STMicroelectronics Corp., USA) to compose one 8:1 analog switch. The 

(6)Rx =
1

P
Kp−r ,

Fig. 5  a The three-layer structure of the piezoresistive sensor. b Piezoresistive sensor pressure–resistor 
characteristic curve. Horizontal axis represents the pressure loaded on the sensor and vertical axis is the 
resistor of sensor. c Sensor calibration. Same color points represent a certain sensor block output during 
calibration and regression straight line with the same color is its result. A total of 64 sensor block calibration 
results are shown
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state of the switch is controlled by the logic level of I/O from the microcontroller. The 
microcontroller is programmed to select the sensor block one by one using two 8:1 analog 
switches and to read the sensor block’s output. Two 4.2-V Li-ion batteries provide power, 
generating 5 V with LM7805 (KIA7805AP, three-terminal positive voltage regulator of 5 V, 
KEC, China) for the signal-collecting circuit and 3.3 V with AMS117 (low-dropout-voltage 
regulator with fixed 3.3 V, Advanced Monolithic Systems, Inc.) for the microcontroller.

Through an amplifier and feedback resistance Rf  Rf  , the output voltage Vout of the ampli-
fier is linear to the pressure sensor received. Defining Doutput,Vadc_ref and m  as the digital 
value received by the analog-to-digital converter (ADC), the reference voltage and resolu-
tion of the ADC, respectively, Vout Vout is related to the resistance of a specific sensor. We 
have

(7)Vout =
Rx + Rf

Rx
Vref ,

Fig. 6  Piezoresistive sensor array scanner electronic schematic. a Schematic before applying elimination 
crosstalk method. A microcontroller is used to select the sampling row and column channel by controlling 
quad bilateral switch CD4066 chip, while other unselected channels are remaining high resistance. Crosstalk 
output is found between sensor blocks as path 1 and path 2 show. b Schematic after applying elimination 
crosstalk method. When a certain row and column channels are selected (row channel 1 and column channel 
1 is selected here), we pull down other row channels to ground and pull up other column channels to Vref, 
such that path 2 and path 3 will be cut off and path 1 will remain. Crosstalk output between sensor blocks 
can be eliminated. c The load force on the sensor block at (2,3) has less influence on other sensors’ value 
output after sensor array applying elimination crosstalk. The dotted line represents data after sensor array 
applying elimination crosstalk and the solid line represents data before sensor array applying elimination 
crosstalk
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where Vadc_ref is 5 V, Vref  is 0.5 V and m is 10 in the experiments, so that the load pres-
sure P can be reflected by Doutput.

During the test, it was found that the pressure on one sensor would lead to an unex-
pected output of the rest of the sensors. Crosstalk is found between sensor blocks caused 
by current path 2 and path 3 when measuring the sensor value at (1,1), where (No. 1, No. 
2) means the sensor block at row channel No. 1 and column channel No. 2, as shown in 
Fig. 6a. The closer the distance between two sensors is, the stronger their interactions 
are. To extract individual sensor resistor value one after another from the 8 × 8 sensor 
array and eliminate the crosstalk between each sensor, as shown in Fig. 6b [40, 41], the 
active sensor during readout was selected by grounding one of the 8:1 analog switch 
channels on the column, while other channels are pulling up to Vref Vref  . The same con-
trol operation is applied to row pins of the 8 × 8 sensor array at the same time, so that 
the current path except path 1 such as path 2 will be cut off. The sampling result shown 
in Fig. 6c indicates that the ADC output value (maximum is 1024) of a certain sensor 
influenced by other sensors is within 10 (32.2  mV output, corresponding to 0.282  kg 
loaded), which is much better than the previous maximum, almost 70 (225 mV output, 
corresponding to 1.977 kg loaded).

Gait‑pressure data collection

A GUI-based program using MatLab R2016a (MathWorks, USA) was designed to make 
the pressure information more available and more visual. Its flowchart is shown in Fig. 7 
, which has functions of filtering the pressure data, showing the real-time pressure data 
curve of a specific plantar-pressure sensor, saving pressure data in the computer, and 
obtaining the gait-pattern results.

To meet the expected situation where people normally want to have low disturbance 
in slow signals and low lag in fast signals, the filter used in the aforementioned program 
is One Euro filter [42]. And [41] has found that a straightforward linear relationship 
between cutoff frequency and the absolute speed of the input signal works well. To con-
struct One Euro filter, the frequency spectrum information of input is studied. Based on 
the experiment data collected at the Children’s Hospital, Zhejiang University School of 
Medicine, the frequency spectrum of plantar-pressure data of the children shows almost 
all information is located in 0–10 Hz, which is similar to the features found by Hangqi 
Wei [43] about adult plantar pressure.

As shown in Table 1, 17 subjects who had undergone gait diagnosis by a specialist were 
recruited to participate in the experiment. The experiments are divided into two sec-
tions: dynamic and static section. The experimental procedures of the dynamic section 
are shown in Fig. 8. Subjects are asked to walk naturally for 10 m two times with a 2-min 
gap on level ground. In the static section, children are expected to stand naturally and 
comfortably for about 10 s five times.

One example of the collected plantar-pressure data in the dynamic section is shown in 
Fig. 9a. The plantar-pressure curve can be divided into several gait phases: initial contact 

(8)Doutput = 2m
Vout

Vadc_ref
= 2m

(

kP−R + P × Rf

kP−R

)

Vref

Vadc_ref
,
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(IC), loading response (LR), mid-stance (MS), terminal stance (TS), pre-swing (PS), and 
swing phase (SP). And typical toe-in, toe-out, and normal foot-pressure distribution in 
static section is shown in Fig. 9b.

Fig. 7  GUI background flowchart. GUI/PC can receive commands from people in the GUI and use BLE to 
communicate with the controller system

Fig. 8  Experiment in the dynamic section: a snapshots of subjects; b experimental procedure of the dynamic 
section
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Gait‑recognition results

The IGRM is coded in Python with scikit-learn library. PCA or linear discriminant 
analysis (LDA) is used to reduce plantar-pressure data dimension in both dynamic 
and static sections. Coefficient gamma of RBF kernel in SVM is chosen as 1/(fea-
tures × variance of data) and penalty parameter C is 1. The layer of the NN is 3 and 
the neuron number of the hidden layer is 10. The total experiment samples are 20,000 
in which normal, toe-in, toe-out, and flat have 5000 samples, respectively, in the 
dynamic section and 1308 in which normal, toe-in, toe-out, and flat have 327 sam-
ples, respectively, in the static section. The scheme of evaluation included stratified 
tenfold cross-validation with recall, precision, and a time cost as metrics. All statisti-
cal analysis was performed using SPSS version 22 (SPSS Inc., Chicago, IL, USA). the 
time cost is calculated by predicting 2000 samples in the dynamic section or 130 sam-
ples in the static section using the same computer.

Experimental performances of dynamic and static sections, respectively, are shown 
in Tables 2 and 3. Figure 10 shows the distribution of the accuracy of different types 
of algorithms which are evaluated by tenfold cross-validation and the average time 
cost per fold. The classification result of classification models to all the samples is 
shown in the average confusion matrix in Fig. 11.

According to Table  2, in the dynamic section, LDA + SVMlin reaches the highest 
average accuracy, 97.79%. In the term of accuracy, independent t-test shows a sig-
nificant difference between LDA + SVMlin and PCA + SVMlin (P-value = 0.007). 
There is no significant accuracy difference among LDA + SVMrbf, PCA + SVMrbf, 
and LDA + NN. However, LDA + SVMlin, 4.40  ms per 2000 samples, has a sig-
nificant smaller time cost than LDA + SVMrbf (P-value <  < 0.01), PCA + SVMlin 
(P-value <  < 0.01), and PCA + SVMrbf (P-value <  < 0.01). PCA + SVMlin has the 
largest time cost (P-value <  < 0.01), 75.2  ms per 2000 samples. In the static sec-
tion, PCA + SVMrbf reaches the highest average accuracy, 92.41%. However, 
PCA + SVMrbf has a significantly larger time cost than others (P-value <  < 0.01), 
2.07  ms per 130 samples. Compared with other algorithms, LDA + SVMlin has no 

Fig. 9  Plantar-pressure data acquisition results. a Curve of plantar pressure with time during level-ground 
walking in the dynamic-section experiment. Subfigure on the left top shows the placement of the sensor 
corresponding to data with the same color. b Typical toe-in, toe-out, and normal foot-pressure distribution 
in the static section experiment. The plantar pressure value is expressed in different grey scales. Pure black 
means zero pressure, pure white means the largest pressure
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significant difference with other algorithms in terms of accuracy, but it has a signifi-
cantly smaller time cost (P--value <  < 0.01) than LDA + SVMrbf, PCA + SVMlin, and 
PCA + SVMrbf.

Fig. 10  Accuracy and time cost results of IGRM in the dynamic and static experiments. The x-axis label 
means reduction algorithm + classification algorithm. For example, LDA + SVMlin means that IGRM’s feature 
reduction algorithm is LDA, and SVM with linear kernel is its classification algorithm. Here, PCA components 
are 7 (capture 90% of the variance) in the dynamic section and 12 (capture 90% of the variance) in the static 
section. And the dimension of LDA is 3 in both dynamic and static section

Fig. 11  Average confusion matrix of algorithm results in tenfold cross-validation of a dynamic and b static 
sections. The labels on the column are predicted labels and those on the row are actual labels; the samples 
number at the row label i and the column label j means the average number of times instances of class i are 
classified as class j in the tenfold procedure
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Table 1  Experimental subjects’ basic information

Index Age (years) Diagnosis Male/female

1 6 Flat Female

2 10 Flat Female

3 8 Flat Male

4 9 Flat Male

5 10 Flat Female

6 7 Flat Female

7 9 Flat Male

8 9 Flat Male

9 10 Flat Male

10 8 Normal Female

11 5 Normal Female

12 6 Normal Male

13 6 Normal Female

14 8 Toe-in Female

15 9 Toe-in Male

16 8 Toe-out Female

17 9 Toe-out Male

Table 2  Experimental results data of dynamic section

“–” means the P-value of this column is computed based on this algorithm. In the Recall column, the value separated by 
“/” means recall value of normal, toe-in, toe-out, and flat, respectively, from left to right. In the Accuracy/time cost P-value 
column, the value separated by “/” means P-value of prediction accuracy and P--value of time cost P--value between 
algorithm on this row and PCA + SVMlin, respectively, from left to right

Algorithm Recall Average 
precision (%)

Time cost (ms) Accuracy/
time cost 
P-value

LDA + SVMrbf 0.96/1.00/0.96/0.93 96.24 6.10
4.40
75.20
27.40
5.10

0.991 / <  < 0.01

LDA + SVMlin 1.00/1.00/1.00/1.00 97.79 –

PCA + SVMlin 0.68/1.00/0.99/0.81 87.24 0.007 / <  < 0.01

PCA + SVMrbf 0.90/1.00/1.00/0.86 94.13 0.107 / <  < 0.01

LDA + NN 0.96/1.00/0.97/0.92 97.38 0.702 / 0.064

Table 3  Experimental results data of static section

“–” means the P--value of this column is computed based on this algorithm. In the Recall column, the value separated by “/” 
means recall value of normal, toe-in, toe-out, and flat, respectively

Algorithm Recall Average precision 
(%)

Time cost (ms) Accuracy/
time cost 
P-value

LDA + SVMrbf 0.85/0.92/1.00/0.80 89.39 1.10 0.698/ <  < 0.01

LDA + SVMlin 0.85/0.96/1.00/0.83 90.90 0.50 –

PCA + SVMlin 0.82/0.90/1.00/0.86 89.49 0.89 0.690/ <  < 0.01

PCA + SVMrbf 0.89/0.91/1.00/0.90 92.41 2.07 0.623/ < 0.01

LDA + NN 0.82/0.95/1.00/0.81 89.75 0.46 0.765/0.388
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Taking precision, time cost, and statistical analysis into consideration, LDA + SVMlin 
and LDA + NN are excellent classifiers in both dynamic and static sections.

Discussion
The results in Fig. 10  prove the feasibility, robustness, and high average accuracy of the 
proposed approach. All of the IGRMs have been identified with a practically applicable 
degree of average accuracy either in the dynamic or static section.

From the experimental results above, LDA + SVMlin (97.79% in average precision), 
LDA + NN (97.38%) are excellent classifiers in both dynamic and static sections. An 
independent t-test shows no significant difference between LDA + NN and LDA + SVM-
lin in terms of accuracy (P-value = 0.702 in the dynamic section, P-value = 0.765 in the 
static section) and time cost (P-value = 0.064 in the dynamic section, P = 0.388 in the 
static section). However, based on the good interpretability of SVM, a combination of 
LDA and SVM with linear kernel is our first choice.

The accuracy distribution of the IGRMs shows that LDA is much better than PCA in 
pathological gait recognition. As shown in dynamic section of Fig. 10 , LDA + SVMrbf 
and LDA + SVMlin have a significantly smaller variance than PCA + SVMrbf and 
PCA + SVMlin in the dynamic section, respectively. However, in the static section, the 
accuracy of LDA + SVMrbf and PCA + SVMrbf, LDA + SVMlin, and PCA + SVMlin 
has no significant difference. We infer it might be caused by the fact that plantar pres-
sure data in the dynamic section are more complex and efficient than those in the static 
section. Besides, LDA has higher efficiency in terms of time cost. Results show that 
PCA + SVM is approximately two to five times the time cost of the LDA + SVM.

According to our prior knowledge, plantar pressure in the static situation have more 
information about foot types than that in the dynamic situation. More interestingly, we 
found that the IGRMs in the dynamic section have higher average accuracy than those 
of the static section. Combined with the corresponding pressure distribution, it can be 
inferred that children may act more naturally in the dynamic section than in the static 
section. Regarding pre-experiment sections I and II, the walking gestures of children 
resemble an actual situation in the dynamic section, while in the static section children 
are prone to stand unnaturally when asked to stand still, which causes the plantar pres-
sure collected by PGRS unable to reflect the actual foot type. Meanwhile, according to 
the opinion of an experienced clinician, it is quite difficult to judge toe-in and toe-out in 
the static section unless it is in a serious stage.

To test the methodology of generalization performance to unseen participants, a 
new simulation under static and dynamic conditions, respectively, is conducted. Dur-
ing the simulation, 17 subjects are divided into two sets, training set containing 16 
subjects and testing set containing one subject, taking turns to choose a different sub-
ject as testing set. As a result, the accuracy of some subjects can reach up above 95% 
and the variance of prediction accuracy is quite large. The performance of toe-in or 
toe-out are quite low, less than 50%. Comparatively speaking, the generalization per-
formance of normal and flat are much better. The average accuracy precision of flat 
and normal is 85.78% and 84.71%, respectively, and the maximum can both reach up 
above 95% in dynamic section. Corresponding accuracy precision in static section is, 
73.48% and 78.10%, respectively, and the maximum can both reach up above 95%. We 
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think it is caused by the small number of subjects and the dataset is not large enough. 
Due to the lack of patients with toe-in or toe-out, this dataset lets the model falls 
into subjects’ specific walking patterns, causing the accuracy precision below 50%. 
With more subjects involved in our dataset, we think the generalization performance 
could converge to much better results, despite the difficulty to collect enough sub-
jects. However, the experiment also shows the efficiency of our method in children 
gait monitoring scenarios.

Conclusions
In this paper, an effective IGRM for pathological gait recognition with dimensional 
reduction and a classification algorithm is put forward. Also, a low-cost and wearable 
PGRS with an 8 × 8 pressure sensor array was built. The experimental results show 
that the proposed IGRM (LDA + SVMlin) has both high accuracy and low prediction 
time cost in the dynamic section, that is, 97.79% average accuracy and a 4.4-ms pre-
diction time per 2000 samples, while in the static section  90.90% average accuracy 
and a 0.5-ms prediction time per 130 samples were realized. Additional generalization 
performance experiment shows IGRM has 85.78% and 78.81% inter-subject recogni-
tion accuracy, respectively, in the static and dynamic sections. Another phenomenon 
found in the experiments is that pathological gait is detected more effectively in the 
dynamic section since children act more naturally in walking than just standing.

In conclusion, a low-cost PGRS has been verified and realize feasibility, highly aver-
age precision, and good real-time performance of gait recognition. Furthermore, the 
experimental results reveal the potential for the computer supervision of non-path-
ological and pathological gaits in the plantar-pressure patterns of children and for 
providing feedback in the application of gait-abnormality rectification.

In this study, the implementation of the IGRM is mainly done via a GUI program 
on a computer. Thus, a PC is still the indispensable device used in pathological gait 
recognition. In the future, all of the PGRS components should be integrated into an 
embedded, wearable system to constitute a more powerful, practical PGRS. Besides, 
more subjects must be involved, and more plantar-pressure data should be collected 
to build a pathological dataset for more complex pathological gait research.
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